随着电动汽车市场发展,各种电动机和电池使用量增多,一个老问题正在逐渐凸显:杂散磁场。
这种电磁干扰 (EMI) 影响当前的位置传感器解决方案(例如霍尔效应传感器),例如磁性旋转变压器和线性可变差动变压器 (LVDT) 。而感应式位置传感器则较少的受EMI影响,可以提供高精度位置感测。
磁场并不是一种未知的人工产物,甚至不是半导体和电子世界中新发现的要素。它们是半导体整体功能的一部分,并在每个芯片的设计中得到考虑。
电机和电池对 EMI 产生有何影响
当无刷直流(BLDC)电机、永磁同步电机(PMSM)、电机电流或大电池电流靠近电子模块和传感器时,杂散磁场会产生干扰,甚至可能引发关键应用的安全故障。
BLDC 和 PMSM 电机是电动和混合动力两轮和四轮车辆中最常用的驱动电机。 它们在转子上使用非常强的磁铁,当电流从电机控制器流出并施加到定子以激活电磁体时,它们就会起作用。电机中使用的磁铁和电流都会向周围区域发射 EMI。
其他 BLDC 电机存在于车辆的许多区域,包括制动和转向电机。另外一个造成杂散磁场存在的因素是电池,也就是大电流充放电时所带来的电磁场。
霍尔效应传感器:一种流行但脆弱的解决方案
位置传感是许多电子设备设计的关键部分,包括车辆内各种应用中的电子设备,例如脚踏板、油门控制、制动定位、变速箱跟踪、信息娱乐旋钮、换档、转向传感器等。 历史上,磁性旋转变压器、线性可变差动变压器 (LVDT) 传感器和霍尔效应传感器一直被用作位置感测的主要方法。
霍尔效应传感器是应用最广泛的解决方案之一,旨在确定磁场的强度和方向,从而能够确定靠近传感器放置的磁体或电磁体的位置。该设备的传感部分是一块薄硅,当暴露在磁场中时,会将电子和空穴推向硅的相对边缘。这会产生一个非常小的电压电位,称为霍尔效应,并且需要强磁场来产生传感环境。
当存在EMI时,霍尔效应传感器面临着扭曲、过早或错误的磁体检测的危险,并且可能面临永久性损坏的风险。为了降低 EMI 引起的故障风险,使用吸磁金属来屏蔽传感器免受杂散磁场的影响,但这会增加解决方案的尺寸和成本。
同为霍尔效应的传感器的霍尔流量计是测量液体流速的设备,霍尔流量计是利用霍尔元件的霍尔效应来检测磁性涡轮从而计算流量/流速。当水通过涡轮开关壳推动磁性转子转动时,产生不同磁极的旋转磁场,切割磁感应线,产生高低脉冲电平。由于霍尔元件的输出脉冲信号频率与磁性转子的转速成正比,转子的转速又与水流量成正比。
电感式位置传感器:高 EMI 环境中的游戏规则改变者
在充满 EMI 的应用中,一种日益流行的降低风险、成本和尺寸的解决方案是电感式位置传感器。 这些传感器不是磁性的,也不需要使用磁铁或磁性金属,但顾名思义,它们是基于电感器的解决方案。
电感式位置传感器提供精确的位置测量,不受杂散磁场的影响,并且不需要外部磁性设备。
通过传感器主体(带有嵌入式金属迹线绕组的薄 PCB)的设计,实现了 EMI 的无源抑制。 当称为目标的导电金属片经过传感器时,PCB 上的初级线圈(类似于变压器上的初级线圈)发出的磁场会受到干扰和目标所在位置的磁场降至零。
PCB 中还嵌入了两个接收线圈(变压器的次级),用于检测磁场干扰引起的不同电压。 由此产生的信息在 IC 上进行处理,将基于位置的输出值返回给系统。 这些器件的设计内置了干扰抑制系统。